
ShellyLibV2.3

Randolf Schultz (randolf.schultz@gmail.com) 30. May 2008

This is the documentation of ShellyLibV2.3, the ShellShapeGenerator.

Contents

1 About this Document 2

2 Introduction 2

3 Changes 2

4 Using the Shell Laboratory 5

4.1 The Main Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4.2 The Main Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4.3 The 3D-View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.3.1 NURBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3.2 Antialiasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3.3 Texturing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.3.4 Key and Mouse bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.4 The Generation Curve Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4.4.1 The GCE Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4.2 Key and Mouse Bindings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.4.3 Inserting and Deleting Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.4.4 Fetching the Curve from Normal-Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.5 The Texture Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.5.1 The TE Menu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.5.2 Generating a texture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.5.3 Parameters of the Texture Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.5.4 Image Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.5.5 Macro Recorder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.5.6 Sundial Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Parameters of the Shell Generator 15



1. About this Document 2

6 Calculation Modi 16

6.1 The Nodule Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.2 The GenCurve Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 File Format 17

8 Output Formats 18

8.1 Surface Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

9 Addresses, Pointers, Literature, Acknowledgements 20

1 About this Document

This document has been written using the SGML-Tools formatting system to generate �les in a variety of

text formats from one source �le. There are plain ASCII, HTML and PostScript versions of this document

prepared for you.

In addition, you can use the provided SGML-source to generate other formats.

Note, that the plain ASCII version probably misses a lot of formatting information.

2 Introduction

ShellyLib is a small set of C-programs for generating seashell or snail shapes. ShellyLib supports many

common �le formats, see section 8 (Output Formats), and has been designed to be as portable as possible.

In contrast to Shelly (the ancestor), ShellyLib is not Freeware but Shareware. Please read the �le "License"

in the top level of the distribution for further information.

ShellyLib contains a small library ("libshelly") and a GUI called "Shell Laboratory", in addition it is

possible to compile a command line driven shell generator ("shelly").

The "Shell Laboratory" is written in Tcl/Tk and C. It uses OpenGL for immediate rendering of the

generated shells.

The algorithm used to generate the shells is an extended version of the algorithm by M.B. Cortie, found in

Computer and Graphics, Vol. 17, No. 1, pp. 79-84, 1993, "Digital Seashells". See section 9 (Addresses,

Pointers, Literature) for more references.

3 Changes

Changes from V2.2 to V2.3 are:

• General Changes:

� New output format Wavefront OBJ.



3. Changes 3

� The output format X3D now outputs Web3D X3D XML data.

• Changes to the Shell Laboratory:

� Improved parameter names in the GUI.

� Added wheel mouse bindings to the GUI.

� Improved usability of generation curve editor (continuous insertion and deletion of points).

� Added a texture macro recorder.

� Texture macros/parameters are now also saved to ShellyLib data �les.

� There are now two adjustable background colors (for Wireframe and Shaded display modes).

� Textures may now be imported from/exported to the TIFF image �le format.

Changes from V2.1 to V2.2 are:

• General Changes:

� A new parameter named "alpha2" has been introduced. This works much like alpha. It allows

to adjust the growth rate of the generating curve without a�ecting the helico spiral. Oops? Read

section 5 (Parameters of the Shell Generator) for more information.

� The 3DMF (3D MetaFile) output format has been added; NURBS and triangles are supported.

� The RIB output now contains own texture coordinates, that improve the texture mapping quality.

This change is only visible for custom generating curves (GCURVE-mode) where the points are

not uniformly distributed.

� A new simple shader (SLtxtsrf) for RenderMan has been added, that maps the generated textures

on the shells just like the "Shell Laboratory" does. Besides that, it shows how to use the custom

texture coordinates of the RIB output.

• Changes to the Shell Laboratory:

� Several changes to the hotkeys in the 3D-View and other places have been made.

� A new RIB output mode (export scene) has been added. This mode saves all movements and

rotations etc. you made in the 3D-View as well as the shell.

� Texture-mapping quality in the 3D-View has been improved for the NURBS rendering mode.

This change is only visible for custom generating curves (GCURVE-mode) where the points are

not uniformly distributed.

� Loading of values (via .shy-�les) with higher resolution as the corresponding slider allows has been

corrected. The sliders resolution is now recalculated according to the loaded value.

� Added Antialiasing via viewing-volume-jittering to the rendering code. This improves overall

rendering quality and works in all rendering modes, although it is not meant to be used with the

wireframe mode. Two levels of antialiasing are available.

� Added a status-bar, that keeps you informed about whats going on at the moment.

� Added simple (single step) undo to the texture generator.

� Added simple image operations (mix, add, sub) to the texture generator. The new texture may

be combined with the older one using this operations.

� Exporting the image of the 3D-View did not work when it was resized, �xed.



3. Changes 4

� The ambient, di�use, specular and background color of the shell/view may be changed separately

now. Check the "Color" submenu of the "Preferences" menu.

Changes from V2.0 to V2.1 are:

• General Changes:

� Due to the low registration moral (I received one (!) registration request, thank you!) the license

changed again. Please read the �le "License" in the top level of the distribution. Important

changes are that I do not release the source for free anymore and I crippled the free available

executables of the Shell Laboratory. Registered users can still get the full source, however.

� "libshelly" now simulates that the walls of the generated shells have a certain thickness, new

parameters are "wall" and "wlen" (see section 5 (Parameters of the Shell Generator) for more

information).

� Nodules are now possible in the "GCurve" mode.

� The DXF output format has been added; Splines, polyface-meshes and 3dfaces are supported.

� The RIB output now contains NURBS instead of B-Splines.

� The RenderMan shaders have been rewritten. They do respect the new wall feature now.

• Changes to the Shell Laboratory:

� The Shell Laboratory has been ported to WinNT/95.

� The Shell Laboratory is now available as stand-alone executable that does not need a bunch of

.tcl-�les or an installed Tcl/Tk at all. Precompiled executables are available for Linux, WinNT/95

and Irix.

� Several changes to the GUI (menu layout, hotkeys etc.) have been made.

� The smooth-shaded rendering mode has been replaced by NURBS rendering using GLU.

� Another rendering mode (NURBS+Wire) has been introduced. This mode displays a NURBS

surface and the associated control polygon.

� A generation curve editor has been added to the Shell Laboratory, see section 4.4 (The Generation

Curve Editor) for more information.

� A texture generator has been added, that utilizes the algorithms published in "The Algorithmic

Beauty of Sea Shells" by H. Meinhardt (see section 9 (Addresses, Pointers, Literature) for a

complete reference, and section 4.5 (The Texture Editor) for the documentation).

� It is now possible to export the rendered image.

A lot has changed from version 1.6 of Shelly (the ancestor of ShellyLib) to version 2.0:

• Legalities have changed, read the �le "License"!

• Almost everything has been completely rewritten, therefore, I suggest to reread the whole documenta-

tion, even if you feel familiar with Shelly!

• Bezier output for POV-Ray creates really smooth surfaces now.

• Several new output formats, e.g. Truespace, RIB, SCED, have been added.



4. Using the Shell Laboratory 5

• The handling of scale factors has changed. There are �le format dependant scale factors now, to ensure

a unique size of the generated shells over the variety of output formats.

• ShellyLib has a really cool GUI now, unfortunately, it is not as nearly as portable as the library itself.

• The former "NewNod" mode is now called "Nodule" and has been improved in terms of speed and

usability. The old "Nodule" mode is gone.

• The code has been split into several parts. The shell generation is done by a small library called

"libshelly". Furthermore, there are two example frontends that use the library "shelly" and the

"Shell Laboratory".

• The original algorithm of M.B. Cortie is limited to ellipsoid generation curves. ShellyLibV2.0 allows

the user to de�ne any generation curve in a special new calculation mode called "GenCurve". This

is useful for Cones or the "Miraculous Thatcheria", which were impossible to generate with the old

algorithm.

• Some special keywords regarding POV-Ray are gone.

• Various other goodies have been included in the distribution, for instance displacement and surface

shaders for RenderMan and a reference sheet that helps to understand the algorithm.

4 Using the Shell Laboratory

The "Shell Laboratory" is a GUI for "libshelly". It is mainly a Tcl/Tk script and some C-code to

interface to OpenGL (via Togl) and "libshelly".

The main goal of this GUI is to ease the process of parameterization through immediate display of the

results.

4.1 The Main Window

Each parameter of the shell generator is represented as a line, containing

• an entry (showing the value of that parameter)

• a con�gurable slider (it's minimum and maximum values are displayed in two labels to the right and

left)

• a button to start the calibration of the slider.

Since all those parameter-lines �t hardly on any screen, I put them into a scroll-able canvas. You might

want to maximize the window size to your full screen height. You can cycle through the entries and sliders

with <TAB> and <Shift+TAB>.

Each change of a sliders value results in the following internal actions. At �rst, a new shell is generated via

"libshelly" in the mode selected in the "Preferences/SL-Mode" sub menu. Then, the shell is displayed as

wireframe, shaded polygonal or smooth NURBS model in the second window called "3D-View". If you enter

a value for a parameter directly in the associated entry, the update process starts when the focus leaves the

entry (the <TAB>-key is pressed or another entry is selected with the mouse).



4. Using the Shell Laboratory 6

The initial con�guration of the sliders has been choosen to protect you from potentially dangerous parameter

values, that may crash the lab, and to ensure greatest possible freedom in setting any parameter. From time

to time it may be necessary to recon�gure a slider, so that other values than allowed by its initial con�guration

may be set. Each slider may be con�gured using the associated "Cal." button. This will open a modal

dialog, where you can change minimum and maximum value and, important, the step-size or resolution of

the slider. Note, that you cannot set any other value than x = min + (n * step-size), (x <= max) with

the slider.

4.2 The Main Menu

• File

� New: reset the lab

� Load: loads a set of parameters

� Save: saves a set of parameters

� Import

∗ Texture (PPM): import an image �le in the PPM format to map on the shell

∗ Texture (TIFF): import an image �le in the TIFF format to map on the shell

� Export

∗ Shell: export the calculated shell as object in various formats (see section 8 (Output Formats)

for more information)

· POV
· DXF
· . . .

∗ Scene: export the calculated shell and all transformations of the 3D-View in RIB format

∗ Texture (PPM): export the current texture as image �le in the PPM format

∗ Texture (TIFF): export the current texture as image �le in the TIFF format

∗ 3D-View Image (PPM): export the rendered shell as image �le in the PPM format; Note, that

the front bu�er will be used for this, make sure that no other window obscures/destroys the

content of this bu�er. The resulting image �les are usually very large, because the ASCII

version of PPM is used, convert them!

∗ 3D-View Image (TIFF): export the rendered shell as image �le in the TIFF format; Note,

that the front bu�er will be used for this, make sure that no other window obscures/destroys

the content of this bu�er.

� Exit: quits the application

• Preferences: (Con�guring miscellaneous things)

� Mode:

∗ Wireframe: switches to wireframe display (default)

∗ FlatShaded: switches to a �at (constant) shaded representation

∗ NURBS: switches to a NURBS rendered representation

∗ NURBS+Wire: NURBS + control polygon

� Projection:



4. Using the Shell Laboratory 7

∗ Perspective: Perspective projection (default)

∗ Orthographic: Orthographic projection

� Color: Change color and material properties of the shell

∗ Set Ambient Color

∗ Set Diffuse Color

∗ Set Specular Color: color of the highlights

∗ Set Shininess: specularity (0 - 128)

∗ Set Background Color

� Antialiasing:

∗ None: disables antialiasing (default)

∗ 4 Passes: enables antialiasing using 4 rendering passes

∗ 8 Passes: enables antialiasing using 8 rendering passes

� DrawCoordsys: switches display of the small coordinate system on or o� (default: on)

� AutoUpdate: If this is enabled, every change of a parameter results in an immediate update of the

display. Toggling the checkbox from "off" to "on" will not result in an updated display. (default:

on)

� Set NURBS Quality: allows to change "GLU_SAMPLING_TOLERANCE"

� SL-Mode:

∗ Normal: (default)

∗ Nodule:

∗ GenCurve: see section 6 (Calculation Modi) for more information on these modes

• Editors:

� GenCurve-Editor: opens the generation curve editor

� Texture-Editor: opens the texture editor

• Help: (A small online help)

� Shell Laboratory: Just a pointer to the original docs.

� About Shell Laboratory

Shortcuts (accelerators) exist for some of these menu entries, see the menu entries for more information.

4.3 The 3D-View

This window uses OpenGL to draw the shell. The shell may be displayed as wireframe model or rendered

using constant shading or as a NURBS-surface. You may con�gure this with the "Mode" sub-menu in the

"Preferences" menu.

You may rotate, zoom and move the shell (moving along z-axis only) with your mouse and keyboard. See

the listing of key and mouse bindings to learn how to.

A coordinate system is drawn to help you to navigate. It might be helpful to estimate the size of the object,

as each axis is exactly 1 (whatever) long. It can be switched o� with the "DrawCoordsys" check-button in

the "Preferences" menu.



4. Using the Shell Laboratory 8

The view is updated every time you change the value of a parameter. You may change this behavior with

the "AutoUpdate" check-button. Note, that changing "AutoUpdate" from o� to on state does not result in

an updated display.

If you get annoyed by the perspective distortions that may occur when viewing large objects, use the new

orthographic projection mode (submenu "Projection" in the "Preferences" menu).

If you are lost in space use <r> to reset to the default settings.

4.3.1 NURBS

Some notes about the NURBS rendering mode. Be warned, that NURBS rendering may be a very lengthy

process, especially if texturing is enabled. Under certain conditions it may last too long, even for the most

patient. A simple rule to avoid long rendering times:

Do not render shells with NURBS that do not �t completely into the view.

Especially if you zoomed the view a lot, or if you have the impression that the viewer is inside or very near

the shell (after a rotation or parameter change) do not activate NURBS!

Setting too small values for the "NURBS Quality" (which is actually "GLU_SAMPLING_TOLERANCE") is dan-

gerous too, I recommend not to set values smaller than 10. However, I have to admit that you need to set

it to 5 to correctly render some example .shy-�les (namely, the rippled Cockle and Rapa).

Even though NURBS represent very smooth surfaces, occasional cracks might be visible on the surfaces,

dependig on the OpenGL implementation. The NURBS rendered with Mesa usually do not su�er from this

problem. On an SGI decreasing "NURBS Quality" or sometimes simply rotating the shell a bit helps.

The NURBS rendering speed of normal sized shells might not be enough for interactive displays on nowa-

days commodity workstations (Pentium class), thats why the representation is automatically switched from

NURBS to �at shaded, while rotating and changing parameters with the sliders.

4.3.2 Antialiasing

Antialiasing improves the rendering quality using a technique called viewing-volume-jittering: the scene is

rendered multiple times with slightly di�erent camera settings. All passes are accumulated to the resulting

image. Note, that the rendering times do not increase linearly with the number of rendering passes because of

the bu�er operations (the accumulation process). This means, if you get 10 frames per second in wireframe

rendering mode, you will not get a fourth (2 fps) with 4 pass antialiasing, this depends on the speed of

the bu�er operations. In practice, expect something near 0.75 frames per second in wireframe mode! You

see that antialiasing is very slow and therefore it is switched o� temporarily while rotating and changing

parameters with the sliders.

Two levels of antialiasing are available. The 4 passes mode increases the quality considerably, while 8 passes

give not much more quality (compared to the increased e�ort). Your mileage may vary, however.

You may toggle antialiasing directly with the <a> hotkey in the 3D-View.

4.3.3 Texturing

Texturing can be enabled or disabled with the <t> hotkey. You may use imported textures or textures

generated in the "Shell Laboratory" by the built-in texture generator.



4. Using the Shell Laboratory 9

Textures should be sized properly in order to be used with OpenGL. Use powers of two, otherwise the texture

image will be scaled, which is something you might not want.

The "Shell Laboratory" uses mipmaps and bilinear �ltering in order to achieve the highest possible tex-

ture mapped rendering quality (depending on the OpenGL implementation). Some strange blurry artifacts

occurred lately using very large (2048x512) textures, I am still investigating this...

Note, that the white highlight on the shell is not rendered correctly if texturing is enabled. This is a

limitation of OpenGL, which can be circumvented by a multi pass rendering approach (like most limitations

of OpenGL), but I guess antialiasing is multi pass enough and there are programs called "renderer" for a

reason...

4.3.4 Key and Mouse bindings

Here are all the key and mouse bindings:

<Mouse-Button-1> (the left one) click and drag: rotate around x- and y-axis

<Cursor-Left>, <Cursor-Right>: rotate around z-axis

<Cursor-Up>, <Cursor-Down>: move along z-axis

<Shift+Cursor-Up/Down/Left/Right>: move view

<x/X/y/Y/z/Z>: view along x (y z) axis

<+>: zoom in

<->: zoom out

<r>: reset all transformations

<a>: toggle antialiasing

<t>: toggle texturing

Other useful keybindings are <w> (switch to wireframe), <f> (switch to �at shading), <n> (switch to

NURBS) and <c> (switch to NURBS + control polygon).

Note, that these key and mouse bindings are available in the 3D-View window only!

4.4 The Generation Curve Editor

The generation curve editor (GCE) o�ers a facility to easily create or modify a generation curve, used in the

GenCurve-mode of "libshelly".

Some basics:

• The GCE always works on a local copy of the generation curve which is used by the main part of the

Shell Laboratory. The original generation curve, which is used for generating shells, is updated only

when you want it. (Check the "Update" menu.)

• Changes to the generation curve will only have an e�ect on the shell displayed in the 3D-View, if

"libshelly" is in the "GenCurve" mode. The GCE will ask you to enable this mode on startup, in

case you did not activate it by yourself.

• You may zoom and move the view of the generation curve with your mouse or keyboard, see keybindings.



4. Using the Shell Laboratory 10

• You may move, delete and insert points of the generation curve.

• Atleast two points are needed in a generation curve!

4.4.1 The GCE Menu

The menu items should be self explanatory.

• Window

� Close

• Update

� No automatic Update

� Update after move

� Update while moving

� Update now!

• Curve

� Move Point

� Insert Point

� Delete Point

� Fetch from Normal-Mode

• Help

� Help

4.4.2 Key and Mouse Bindings

Some accelerators exist for the menu:

<Ctrl+w>: close window

<Ctrl+m>: move points

<Ctrl+i>: insert points

<Ctrl+d>: delete points

<Ctrl+f>: fetch curve from Normal-Mode

<Ctrl+u>: update generation curve of the main window

Key bindings for zooming and moving are:

<Mouse-Button-3>: (the right one) click and drag: move the view

<Up,Down,Left,Right>: move the view

<r>: reset all moves

<+,Add>: zoom into the view x2 (works upto a factor of 8)

<-,Sub>: zoom out of the view x0.5 (works upto a factor of 0.125)



4. Using the Shell Laboratory 11

4.4.3 Inserting and Deleting Points

To insert a new point simply select the "Insert Point" menu entry, then click on a point of the generation

curve. Do not release the mouse button, but simply drag the new point to it's position. Deleting points

is even more simple, use the "Delete Point" menu entry and select the point to delete with your mouse.

Note, that you cannot delete any points if there are only two left.

4.4.4 Fetching the Curve from Normal-Mode

If you just want to change some features of an ellipsoid generation curve you may fetch one easily from the

shell generator for editing purposes. The curve fetched using the "Fetch from Normal-Mode" curve menu

entry is the �rst curve that would be generated in the Normal-Mode. This means that certain transformations

are applied to the original centered ellipsoid generation curve before fetching!

You may preview the curve you will get, by setting the following ShellyLib parameters "omin" to 0 and

"omax" to 1 and by switching the shell 3D display to wireframe.

If you want to start your work on the generating curve with the same shell as would be generated in the

Normal-Mode, set temporarily the following parameters:

"beta" to 90.0;

"phi","my","omega", "A" to 0.0;

"a", "b", "scale" to 1.0.

Now fetch the generating curve, and restore the original values. This does not give you exactly the same

shell, but the changes should be minimal.

4.5 The Texture Editor

The texture editor (TE) o�ers a facility to easily create textures to be mapped onto the shell shapes generated

by "libshelly". It utilizes the algorithms published in "The Algorithmic Beauty of Sea Shells" by H.

Meinhardt (see section 9 (Addresses, Pointers, Literature) for a complete reference). This section is not

intended to explain these algorithms and their parameters in depth. If you are interested read the book.

Some basics:

• The TE always works on a local copy of the texture which is used by the main part of the Shell

Laboratory. The original texture, which is used for rendering shells and texture export, is updated

only when you want it. Check the "Update" menu.

• Changes to the texture will only have an e�ect on the shell displayed in the 3D-View, if texturing is

enabled. The TE will automatically activate texturing when you update the texture.

•

4.5.1 The TE Menu

The menu items should be self explanatory.

• Window



4. Using the Shell Laboratory 12

� Close

• Macro

� Clear

� Remove Step

� Run

� Record

• Update

� No automatic Update

� Update after generate

� Update now!

• Help

� Help

The following hot-keys are de�ned:

<Ctrl+w>: close window

<Ctrl+u>: update texture

<Ctrl+g>,<g>: generate texture

<Ctrl+s>,<s>: stop generator

<Ctrl+z>: Undo

4.5.2 Generating a texture

For your �rst experiments just select a texture type using the "Select type:" listbox and use the

"Generate" button.

Follow these steps to create a texture:

1. At �rst, set the desired size of the texture. If you plan to map the generated texture onto a shape in

the Shell Laboratory, you should stick to sizes that are powers of two (64, 128, 256 etc.), as OpenGL

demands this. GLU does scale the texture to the next power of two, but this might not deliver best

results. This scaling does not a�ect the size of any exported textures. Note, that some OpenGL

implementations impose even more constraints (a maximum texture size of 256x256 for instance). Also

note, that some texture type speci�c parameters may need to be adjusted, if you select a di�erent

height than the default height of 128.

2. Now select the type of the texture, with the "Select type:" listbox. Selecting a type will �ll the next

two sections of adjustable parameters with default values.

3. You may alter the type speci�c settings now. Set colors and adjust parameters of the texture generator,

more information about these settings can be found in the next section: 4.5.3 (Parameters of the texture

generator).



4. Using the Shell Laboratory 13

4. Choose an image operation now. The default (Overwrite) simply destroys the old texture.

5. Now you can generate the texture, using the "Generate" button. If you �nd that the created texture

does not come out right, you might stop the generator with the "Stop!" button. Note, that while

generating a texture, the GUI might respond a little slower than usual.

6. The generated texture can be mapped onto a shell now. Simply press "Ctrl+u", then change to a

Flat-shaded or NURBS display. Texture mapping may reduce performance drastically on software-only

OpenGL implementations; switch to the wireframe display before rotating or changing parameters!

4.5.3 Parameters of the Texture Generator

How does the texture generator work?

It simulates the distribution of substances (e.g. pigments) in the cells of a shell over it's lifetime. Several

di�erent e�ects may in�uence the distribution of substances like di�usion. All these di�erent e�ects are

put together in sets of equations. Each set of equations allows for the simulation of a speci�c type of shell

pattern. There is no general set of equations available that could simulate all possible patterns of shells.

It is clearly beyond the scope of this documentation to explain all the equations and their parameters, as

they are really complex. I can only point you to Meinhardt's book.

The texture generator implements many (not all!) equations from Meinhardt's book "The Algorithmic

Beauty of Sea Shells". The parameter names were taken from the example implementation given in the

book.

Some features of Meinhardt's software are not implemented in the texture generator. It is not able to

plot concentrations of di�erent substances, but just one (substance A). The type of the plot is always a

continuous mapping of the concentration of substance A to color values. This mapping can be adjusted

with the "Set Color:" parameters. They de�ne an interval of concentration values (the two entries) and

the accompanying interval in color (the two colored buttons). Two more things are important about this

mapping: if the concentration of substance A is smaller than the value in the �rst entry, the resulting color

is white; if the concentration is bigger than the value in the second entry the resulting color will be that of

the second button.

Now on to the other parameters. You may select di�erent parameter sets with the pop-up-menu that comes

up if you press the "Set Parameter:" menu button.

Up to seven substances (named A to G) may be used for the simulations. That's why there are seven

numbers in each parameter list (except for the "Misc."-section). The �rst number in the list (if "Initial

Concentration (A)" is selected) is the initial concentration of substance A, consequently. The second

number is the initial concentration of substance B and so on. Do not confuse the names of substances (A to

G) with the names of parameters (A, B, C, D, G, R, S).

An important section of parameters is the "Misc."-section. The parameter names from this list (except for

"RS") have been taken from the example implementation by Meinhardt as well.

Some simulations depend on random numbers. You can set the amount of randomness with the "KR"

parameter. The "RS" parameter controls the initialization of the random number generator. If "RS" has a

value other than zero, this value will be used to initialize the random number generator. This is done before

each simulation run, this way the results of random simulations become predictable. If you set "RS" to zero,

the random number generator will not be initialized at all. The resulting pattern is not predictable anymore,

and you may generate di�erent patterns just by pressing the "Generate" button again and again.



4. Using the Shell Laboratory 14

For the other parameters, please consult the book.

Note, that not every set of equations uses all seven substances. Nevertheless, you must have seven numbers

in each parameter section (except for the "Misc."-section of course).

Here is a short survival-guide to help you to get certain things done:

• Problem; Solution

• The pattern is to small/big in O-direction; Increase/decrease "KP" (might not work for all texture

types, as this actually controls the number of iterations used to calculate a single column)

• The pattern is to small/big in S-direction; Increase/decrease the "Height"-value.

• The texture generator seems to stop before the end, leaving a lot of white space; If the "wall"-

parameter has a value higher than "0.0" the texture generator will smoothly fade generated textures

to white on the texture position that corresponds to the beginning of the aperture of the shell. This

way the interior of the shell is not textured at all. If you change "wall" to "0.0" this will not happen.

• Texture comes out distorted or noisy; Sometimes simply generating a new texture will help (if you did

not �ddle with any parameters it will), otherwise try to decrease "KR" (randomness) or the di�usion-

constants, which should not be higher than "0.4" to avoid numeric instabilities.

4.5.4 Image Operations

Image operations may be used to combine generated images, this boasts the number of possible patterns

considerably. You may choose between three e�ects, mix, add and sub; they should be self explanatory, if

not: simply try them out. Press <Ctrl+z> (single step undo) if you are not satis�ed with the results.

Use the associated entry to determine the strength of the e�ect.

The two source images should have the same dimensions, unless you want funny results.

4.5.5 Macro Recorder

Since ShellyLib2.3 there is a macro recorder integrated into the Texture Generator.

If recording is enabled, every completely generated texture creation pass is recorded with all its parameters

(including texture size and image operation) as a macro step. If the "Stop!" button is used, no macro

step will be recorded. All macro steps or just the last macro step may be erased using the menu entries

"Clear" and "Remove Step" respectively. Using undo (<Ctrl+z>) will also remove the last macro step. A

recorded macro may of course also be run using "Run", all recorded steps will be executed in the order of

their recording.

Furthermore, a recorded macro will be saved to ShellyLib data �les, written by the Shell Laboratory. If a

loaded data �le contains a texture macro, the Shell Laboratory will o�er to run it immediately.

4.5.6 Sundial Tutorial

This section shows how the texture for the Sundial shell on the ShellyLib Home Page was created.

1. Load the "Sundial.shy" ShellyLib data �le from the shy directory.



5. Parameters of the Shell Generator 15

2. Open the texture editor.

3. Set the texture width to 1024.

4. Choose the "IrregularStripes" texture, generate it.

5. Now we want to add the perpendicular white stripes to the texture. Choose the "Stripes3" texture.

6. Set the the start value to 0.0, start color to black (0, 0, 0). Set the end value to 0.5 and the end color

to a middle gray (128, 128, 128). This makes the stripes a bit broader(start - end values) and limits

the generated color values to 128. For sharper white perpendicular stripes experiment with higher end

values. Use "Ctrl+z" to undo the last change to the generated texture, if you are unsatis�ed with the

result!

7. Set "KP" from 20 to 30 ("Set parameter:/Misc"). This increases the number of stripes.

8. Switch to image operation "Brighten", change the strength of the e�ect to about 80 percent.

9. Generate again. The brown stripes should now be interrupted by white perpendicular ones.

5 Parameters of the Shell Generator

The basic idea of the algorithm is to simulate a shell shape by rotating a growing ellipse around the z-axis,

and simultaneously displacing it from the z-axis. This results in a �at spiral. If we move the ellipse along

the z-axis while rotating, a shell like shape will appear. The curve determined by all centers of all ellipses is

a so called helico-spiral.

The parameters of this process are divided into 5 groups. Parameters that need to be given in degrees are

marked with an asterisk ("*").

Angular Parameters:

These parameters change the shape of the helico-spiral ("alpha"* and "beta"*) and the tilt of the

ellipse against the axes of the local coordinate system of the ellipse ("phi"*, "my"*, "omega"*). Note,

that "alpha"* does determine the growth rate of the ellipse too.

"alpha2"* is a new parameter that has been introduced with V2.2. It works much like "alpha"* but

it only changes the growth rate of the generating curve. At its default setting of 90.0, no change to

the original growth rate takes place. At a higher value it will decrease the growth rate determined

by "alpha"* and vice versa. Due to the dependence from "alpha"* you have to �nd a new value for

"alpha2"* every time "alpha"* is changed! See the new "Snail.shy" for an example.

Linear Parameters:

They change the size (and shape) of the ellipse ("a", "b") and the distance of the �rst ellipses center

from the z-axis ("A").

Dimensional Parameters:

They set how many ellipses are calculated ("omin"*, "omax"*, "od"*), and how many points on each

ellipse are calculated ("smin"*, "smax"*, "sd"*). Finally, a global scale-factor, independent from all

�le format speci�c scaling, might be applied using "Scale".



6. Calculation Modi 16

Nodule Parameters:

Change all aspects of nodules, position on the ellipse ("P"*), size ("W1"*, "W2"*), length ("L"), number

of nodules per whorl ("N") and starting point on the spiral ("Nstart"*).

There are three independent groups of nodules. Add a "2" to each nodule parameter to set parameters

of the second nodule group. Length of second nodule is therefore "L2". Do the same for the third

nodule, with a "3". There are two more parameters to control an o�set between the three groups of

nodules, "Off2"* is the o�set between nodule 1 and nodule 2 and "Off3"* is the o�set between nodule

1 and nodule 3.

Nodule-Mode Parameters:

"Scano", "Scans", "Hdo", "Hds" refer to section 6 (Calculation Modi) for information on these pa-

rameters.

Wall Parameters:

"wall" de�nes the thickness of the wall in terms of "a" and "b" and "wlen"* de�nes how many degrees

into the interior of the shell the wall should be computed. A simple trick allows the calculation of the

inner walls:

At the aperture of the shell "a" and "b" are multiplied with "wall" and then the shell generator

computes the interior with negative "od".

The wall feature is a big win for realism, now even direct views of the aperture of the shell do not

reveal the synthetic nature of the shell easily.

Unfortunately, simple scaling of the generating curve does not yield best results in every case, namely

the GCURVE-mode. For best results, try to center the custom generation curves.

The most in�uential parameters wrt. the shell shape are "alpha", "beta", "A", "a" and "b".

Here are some hints on how certain values change the shape of the shell.

• Alpha 90 means no growing of the ellipse and no spiral shape at all. If beta is 90, too, this will produce

a torus like shape. If alpha gets smaller the spiral will form and the ellipse will grow.

• Beta 90 means no moving of the ellipse along z-axis. This is �ne for shells like "Nautilus", "Planorbis",

"Ammonite" or several cockles. If you want to shape a "Turritella" or "Natalina" you have to decrease

beta.

• The meaning of a certain value of A depends highly on a and b. Generally, A should be higher as a

and b, otherwise the shell may look more like a sphere.

6 Calculation Modi

This section documents special calculation modi of ShellyLib.

6.1 The Nodule Mode

The parameters "od" and "sd" determine the resolution of the generated shell. But if the shell contains

nodules that are thin and long you would have to use very small "od" and "sd" values in order to exactly



7. File Format 17

capture the shape of the nodules. This would lead to a real waste of memory, because between the nodules

the high resolution is not necessary. To minimize memory complexity, a special nodule calculation mode

has been introduced. This mode adapts both "od" and "sd" while calculating the shell, so that small

distances between the calculated points are only used when needed, in the steep regions of the nodules. This

process may be controlled with the parameters "Scano", "Scans", "Hdo" and "Hds". "Scano" determines

the smallest possible distance of two points in O direction, the same does "Scans" for the S direction. "Hdo"

de�nes the smallest possible di�erence in height between two points in O direction, the same does "Hds"

for the S direction. The di�erence in height is being calculated using the height of the nodule. The nodule

mode may be invoked by the "NODULE" keyword.

"Hdo" and "Hds" are multiplied by the nodule height of the �rst nodule group, before they are passed to

"libshelly", when using the example frontends. Thus, the height di�erence value is depending on the

nodule height. It is now easier to estimate the e�ect of a certain value, e.g. 0.1 means a tenth of the

nodule height, no matter how high the nodule actually is. Note again, that this multiplication is not done

by "libshelly".

Unfortunately, the result of this mode is of irregular structure. This means the only possible output type is

triangles. No spline output, neither B-spline nor Bezier patches, may be generated using this mode.

6.2 The GenCurve Mode

The original algorithm of M.B. Cortie is limited to ellipsoid generation curves. ShellyLibV2.x allows the user

to de�ne any generation curve, using the "GenCurve" mode. This is useful for Cones or the "Miraculous

Thatcheria", which were impossible to generate with the old algorithm.

The curve needs to be speci�ed as a list of points with the "GCx:" and "GCy:" keywords. The parameters

"a" and "b" still scale the curve as they do it in the other modes with the ellipse, and "A" moves the curve.

However note, "smin", "smax" and "sd" have no in�uence on the shell shape in "GenCurve" mode, the

generation curve completely takes over these parameters!

Nodules are possible within this mode, but the result depends highly on the number of points of the generation

curve.

Note, that the resolution of the shell depends directly on the list of points. The spaces between the points

are not interpolated. The curves provided in the example data �les in the "shy" directory are meant to be

used with spline output formats like "RPL" or "RIB", because the curves contain only few points. Note that

not every output format is possible within this mode at present. You may use: "RPL", "RIB", "BEZ", "SCB".

Switch to this calculation mode with the "GCURVE" keyword.

7 File Format

ShellyLib uses �les in a simple format to store sets of parameters. You should use a characteristic �lename

extension like ".shy" for these �les. However, this is not mandatory.

Every line of the �le is scanned for keywords. Lines that start with a hashmark ("#") are fully ignored. If a

line contains no keyword it is treated like a comment.

Otherwise the number behind the keyword is copied into an internal variable or a �ag is set. This implies,

that there are two types of keywords, so called number-keywords and �ag-keywords. Number-keywords need



8. Output Formats 18

to be combined with a number, �ag-keywords have just to be there to set something. All names of the

number-keywords correspond to parameters of the shell generator.

Number-keywords contain a ":" to remind you to write a number behind them. Flag-keywords are written

in capital letters.

Keywords to change the so called "angular parameters" are "alpha:", "beta:", "phi:", "omega:", "my:".

Keywords to change the "linear parameters" are "A:", "a:", "b:".

Keywords for "dimension parameters" are "Scale:", "smin:", "smax", "sd:", "omin:", "omax:", "od:".

The keywords for nodule 1 are: "P:", "L:", "W1:", "W2:", "N:".

Nodule 2: "P2:", "L2:", "W12:", "W22:", "N2:", "Off2:".

Nodule 3: "P3:", "L3:", "W13:", "W23:", "N3:", "Off3:".

Keywords for wall thickness: "wall:" and "wlen:"

For an exact description of the parameters read section 5 (Parameters).

Keywords for switching output formats are "RPL", "T3D", "RAW", "X3D", "BEZ", "RIB", "SCD", "SCB", "TSP",

"DXF", "DXC", "DXP". See section 8 (Output Formats) for more information regarding the formats.

Keywords for special calculation modi are "NORMAL", "NODULE", "Scano:", "Hdo:", "Scans:", "Hds:",

"GCURVE", "GCx:", "GCy:". See section 6 (Calculation Modi) for more information.

Some remarks: Everything is case sensitive ("rpl" is not the same as "RPL")! Double use of the same

keyword causes an overwriting of the last set value. Only one keyword per line is allowed. Maximum line

length is 255 characters.

8 Output Formats

ShellyLib is able generate �les in the following formats:

• Format, Program, Output-Keyword, �le type (content), remarks.

• POV, POV-Ray, "BEZ" / "POV", Bezier Patches, Does not work in Nodule-mode! For Nodule-mode

use "RAW" and RAW2POV.

• RPL, Real3D, "RPL", executable RPL-macro, creates a B-Spline-mesh in Normal-mode/GenCurve-

mode or a Triset (triangles) in Nodule-mode.

• RIB, various, "RIB", RenderMan Interface Bytestream creates NURBS. Does not work in Nodule-mode.

• 3DMF, various, "3DM" / "3DN", 3D MetaFile (ASCII) NURBS ("3DN") or triangles ("3DM"), NURBS

do not work in Nodule-mode.

• DXF, various, "DXF" / "DXC" / "DXP", B-Splines ("DXF"), PolyFace-Meshes ("DXP") or 3DFaces

("DXC"), "DXF" and "DXP" do not work in Nodule-mode.

• T3D, T3DLib / Imagine, "T3D", triangle mesh, Note, that Imagine cannot directly read these �les,

convert them from ASCII to binary using T3DLib �rst.

• RAW, RAW2POV, "RAW", triangles,



8. Output Formats 19

• COB, Truespace, "TSP", triangles

• SCD, SCED, "SCD" / "SCB", contains a triangle mesh ("SCD") or Bezier patches ("SCB"), "SCB" does

not work in Nodule-mode.

• X3D, X3D, "X3D", triangles, For fast previewing (wireframe) using X11.

For more information regarding compatibility issues (will program xy read the �le?) refer to the compatibility

section of the ShellyLib Home Page: "http://www.shelly.de/".

8.1 Surface Types

ShellyLib allows you to save the generated shells in a variety of di�erent representations, depending on the

output format you have choosen (and sometimes additionally from the calculation mode). It is important

to know some things about the di�erent surfaces, and how they are generated:

• Bezier-patches result from "POV" or "SCB" output mode. POVRay and SCED do only allow patches

that contain 16 controlpoints, four in each direction. Bezier surfaces interpolate only the four con-

trolpoints on the corners of the patch. Hence, it is not possible to simply write Bezier-patches in a

way that each point calculated by the shell generator becomes a controlpoint of the Bezier-patches.

This would result in discontinuities and even holes at patch boundaries. Instead, new controlpoints

have to be calculated so that the transition between two patches is smooth. For each four points of

the original data from the shell generator a Bezier-patch with 16 controlpoints is being calculated.

This may increase �lesizes considerably! All generated points at the boundaries of the shell will be

discarded. All other points generated by ShellyLib will be interpolated by the resulting surface. The

algorithm used to calculate the controlpoints may deliver bad results in highly curved regions (thin

long nodules, for example). You need to generate atleast four points in each direction to write a �le in

"POV" or "SCB" format! Even though a single Bezier-patch is built from four generated points, atleast

16 points are needed to write a single patch (four in each direction). This is because the calculation of

the controlpoints of the Bezier-patch needs information about the surrounding patches.

• B-Splines result from "RPL" output mode if ShellyLib is in Normal-mode or GenCurve-mode. The

resulting surface does not interpolate any generated points, and is much smoother than the Bezier-

output. You can make Real3D interpolate the outer points of the mesh using "triple ends" in the

"Modify/Freeform" menu (of Real3D, that is). It may be necessary to increase the length of nodules

(parameter "L:", "L2:" and "L3:") to achieve proper nodule heights.

• NURBS result from "RIB" output mode if ShellyLib is in Normal-mode or GenCurve-mode. The

resulting surface does only interpolate all the endpoints of the surface in S-direction. This is achieved

by high knotvalues for these points. This has been done to ease the work with the generation curve

editor (see section 4.4 (The Generation Curve Editor)). This way start and end point of the speci�ed

generation curve are touched by the surface. The endpoints in O-direction are not interpolated in

order to achieve a smooth round surface. Atleast four points in each direction are needed. The shells

rendered with GLU-NURBS and the shells rendered using the "RIB" output should look exactly the

same.



9. Addresses, Pointers, Literature, Acknowledgements 20

9 Addresses, Pointers, Literature, Acknowledgements

The author may be contacted via e-mail: "randolf.schultz@gmail.com".

or snail mail:

Randolf Schultz

Unter den Linden 51

19079 Mirow

Germany

New versions and additional information may be obtained via the ShellyLib Home Page:

"http://www.shelly.de/".

The following literature has been of much help

• Digital Seashells, M.B. Cortie, Computer and Graphics, Vol. 17, No. 1, pp. 79-84, 1993

• Shells, S. Peter Dance, Harper Collins Publishers 1992, ISBN 0 7322 0067 9

• The Algorithmic Beauty of Sea Shells, Hans Meinhardt, Springer-Verlag Berlin Heidelberg 1995, ISBN

3 540 57842 0


	About this Document
	Introduction
	Changes
	Using the Shell Laboratory
	The Main Window
	The Main Menu
	The 3D-View
	NURBS
	Antialiasing
	Texturing
	Key and Mouse bindings

	The Generation Curve Editor
	The GCE Menu
	Key and Mouse Bindings
	Inserting and Deleting Points
	Fetching the Curve from Normal-Mode

	The Texture Editor
	The TE Menu
	Generating a texture
	Parameters of the Texture Generator
	Image Operations
	Macro Recorder
	Sundial Tutorial


	Parameters of the Shell Generator
	Calculation Modi
	The Nodule Mode
	The GenCurve Mode

	File Format 
	Output Formats
	Surface Types 

	Addresses, Pointers, Literature, Acknowledgements

